edexcel

Mark Scheme (Results)
November 2012

GCSE Chemistry $5 \mathrm{CH} 2 \mathrm{H} / 01$

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.
Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson.
Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2012
Publications Code UG034057
All the material in this publication is copyright
© Pearson Education Ltd 2012

GCSE Chemistry 5CH2H/ 01 Mark Scheme - November 2012

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (a)}$	C : copper sulfate and sodium chloride		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (b)}$	copper sulfate (1) blue-green (1)	allow blue or green or green-blue	(2)
	or sodium chloride (1) yellow (1) colour mark consequential on correct metal (compound)	reject orange and yellow-orange	

Question Number	Answer	Acceptable answers	Mark
1(c)(i)	```An explanation linking weak intermolecular forces /weak forces between molecules (1) little {heat / energy} needed to separate (molecules) (1)```	bonds / attractions in place of forces intermolecular forces between \{atoms / bonds\} loses $1^{\text {st }}$ marking point any answer in terms of covalent or ionic bonding scores zero	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (c) (\text { ii) }}$	A description linking	use separating funnel (1)	alternative description of separating funnel eg funnel with a tap at the bottom suitable labelled diagram burette
	run off lower \{layer / liquid\} / OWTTE (1)	allow layers / liquids to separate ignore fractional distillation	

$\left.\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \text { Answer } & \text { Acceptable answers } & \text { Mark } \\ \hline \mathbf{1 (d)} & & \begin{array}{l}\text { Allow a diagram without labels } \\ \text { for 2 marks }\end{array} & \text { (2) } \\ & \begin{array}{l}\text { shared pair in molecule (1) } \\ \text { rest of molecule consequent on } \\ \text { first mark (1) }\end{array} & \begin{array}{l}\text { any symbols shown must be } \\ \text { correct for the 2 }\end{array} \\ \text { allow mark } \\ \text { and crosses for electrons } \\ \text { wrong compound = zero marks }\end{array}\right]$

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (a) (i)}$	soft / low melting point / low boiling point	easily cut with a knife $=$ soft low density malleable solid at room temp. ignore float on water reject chemical properties	(1)

Question Number	Answer	Acceptable answers	Mark
2(a)(ii)	An explanation linking (all have) one electron in outer shell (2)	one outer electron = 2 marks group number shows number of electrons in outer shell $=2$ marks same number of electrons in outer shell = 1 mark incorrect number of electrons in the outer shell = 1 mark accept outer orbit / highest energy level in place of outer shell	(2)

Question Number	Answer	Acceptable answers	Mark		
$\mathbf{2 (b) (i)}$	A description including any two of				
effervescence / fizzing / bubbles					
(1)					
potassium floats (1)					
moves (on surface) (1)					
potassium forms ball / melts (1)					
potassium decreases in size /					
disappears / dissolves (1)					
(lilac) flame / catches fire (1)					
spits / explodes / sparks (1)				\quad ignore ignites	ignore smoke
:---					

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (b) (i i)}$	D: $2 \mathrm{~K}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{KOH}+\mathrm{H}_{2}$		(1)

Question Number	Answer	Acceptable answers	Mark
2(c)	An explanation linking any two of increasing \{size /radius (of atom) l number of shells\} (1) increased shielding (of outer electron) (1) less attraction for (outer) electron (1)	easier to remove (outer) electron	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (a) (i)}$	A, B and C	Mg Ca Au (any order) magnesium calcium gold (any order)	(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (a) (i i)}$	A and B	Mg Ca (any order) magnesium calcium (any order)	(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (b)}$	8 (protons)		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (c) (i)}$	A: 10		(1)

Question Number	Answer	Acceptable answers	Mark
3(c)(ii)	$\begin{aligned} & \text { (in } 100 \text { atoms) } \\ & \quad \text { mass of mass number } 20 \\ & \text { atoms }=20 \times 90(1) \\ & \text { mass of mass number } 22 \\ & \text { atoms }=22 \times 10(1) \\ & \text { relative atomic mass } \\ & =\{(22 \times 10)+(20 \times 90)\} / 100 \\ & (=20.2)(1) \\ & \text { OR } \\ & \quad 20 \text { contributes }=90 / 100 \\ & \times 20(1) \quad 22 \text { contributes }=10 / 100 \\ & \times 22(1) \quad \text { relative atomic mass } \\ & 90 / 100 \times 20+10 / 100 \times 22(= \\ & 20.2)(1) \end{aligned}$	$20.2=3$ marks $21.8=2$ marks (only 1 error made)	(3)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (d)}$	An explanation linking any two of (the element is) group 0 / noble gas /unreactive / inert / does not react (1) \{(has) 8 electrons / full\} outer shell (1) prevents filament from reacting (1)	ignore 'not very reactive' does not \{gain / lose / share\} electrons	(2)

Question Number	Answer	Acceptable answers	Mark
4(a)	to allow air/oxygen in	to ensure magnesium reacts/burns/ combusts	(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{4 (b) (i)}$	all points correctly plotted to half a small square (2) line of best fit (1)	Allow one mark for four or five correctly plotted points ecf their points	(3)

Question Number	Answer	Acceptable answers	Mark
4(b)(ii)	Any one from	(1)	
	not all magnesium \{burned / reacted\} / some left / incomplete reaction not enough air/oxygen some magnesium oxide / smoke lost	lid not lifted / not enough times lid left off too long (so loses MgO)	

Question Number	Answer	Acceptable answers	Mark
$\mathbf{4 (c)}$	$2 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO}$ left hand formulae (1) right hand formula (1) balancing correct formulae (1)	correct multiples	(3)

Question Number	Answer	Acceptable answers	Mark
4(d)	$0.414 / 207$ or $0.064 / 16(1)$ $0.002: 0.004$ or $1: 2(1)$ empirical formula $\mathrm{PbO}_{2}(1)$	if $207 / 0.414$ and $16 / 0.064$ ratio $500: 250$ or $2: 1(1)$ empirical formula $\mathrm{Pb}_{2} \mathrm{O}(1)$	(3)
		allow 3 marks for $0.414 / 207$ or $0.064 / 32$ ratio $1: 1$ empirical formula PbO_{2}	
		allow 2 marks for if $0.414 / 207$ and $0.064 / 32$ ratio $1: 1$ empirical formula PbO	

Question Number	Answer	Acceptable answers	Mark
5(a)	An explanation linking two of the following temperature decreases (1) \{heat / energy\} taken in (1) (so process) endothermic	ignore references to bond breaking / making heat given out $/$ exothermic $=1$ max.	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{5 (b)}$	Shown correctly on diagram:	(2)	
	horizontal line to right of reactant (1) product line below reactant line (1)	ignore any connecting lines product label not needed	

Question Number	Answer	Acceptable answers	Mark
$\mathbf{5 (c)}$	D: heat energy is required heat energy is released	(1)	

Question Number		Indicative Content	Mark
QWC	*5(d)	An explanation including some of the following points smaller pieces of solid of same mass larger surface area more frequent collisions higher rate of reaction higher temperature particles move faster more frequent collisions particles have more energy more collisions have required energy to react / activation energy more collisions successful higher rate of reaction ORA	(6)
Leve I	0	No rewardable content	
1	1-2	a limited explanation of one factors e.g. at higher temper higher rate e.g. when particles smaller size higher rate the answer communicates ideas using simple language a limited scientific terminology spelling, punctuation and grammar are used with limited	ture ses uracy
2	3-4	a simple explanation e.g. at higher temperature particles faster, more collisions so higher rate e.g. smaller sized particles (of same mass) have greater surface higher rate the answer communicates ideas showing some evidence of and organisation and uses scientific terminology appropriately spelling, punctuation and grammar are used with some accur	ve a so arity acy
3	5-6	a detailed explanation e.g. (when particles collide they) o when they have sufficient energy/activation energy and at a hig temperature more of the particles have sufficient energy/ activation energy so more collisions will be successful and when particles s size higher rate the answer communicates ideas clearly and coherently us range of scientific terminology accurately spelling, punctuation and grammar are used with few errors	react ler

Question Number	Answer	Acceptable answers	Mark
$\mathbf{6 (a)}$	$\mathrm{D}: \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{6 (b)}$	C:8		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{6 (c)}$	Description including four of the following sodium - 2.8.1 / 1 electron in outer shell (1) sodium (atoms) lose electrons (1) one per atom (1) (forms) Na ${ }^{+}$(1) sulphur - 2.8.6 / 6 electrons in outer shell (1) sulfur (atoms) gain electrons (1) two per atom (1) (forms) S2- (1) two sodium atoms / ions combine with one sulfur atom / ion (1) formula is Na2S (1)	Marks can be gained using diagrams	mention of shared electrons / covalent bonding in words or diagram = max 2 marks

Question Number		Indicative Content	Mark
QWC	*6(d)	A description including some of the following points solid \{regular arrangement/ lattice\} (of ions) sodium $/ \mathrm{Na}^{+}$ions chloride $/ \mathrm{Cl}^{-}$ions (held together by) strong (ionic) bonds strong (electrostatic) forces of attraction between oppositely charged ions / positive and negatively charged ions closely packed together (when solid) does not conduct because ions cannot move molten heat energy \{overcomes/breaks\} (strong ionic) bonds strong (electrostatic) forces of attraction between oppositely charged ions / positive and negatively charged ions ions can move (therefore) conducts when molten	(6)
Leve I	0	No rewardable content	
1	1-2	a limited explanation e.g. does not conduct when solid e.g. does conduct when molten the answer communicates ideas using simple langua limited scientific terminology spelling, punctuation and grammar are used with lim accuracy	uses
2	3-4	a simple explanation e.g. does not conduct when so conduct when molten because \{ions / particles / atoms the answer communicates ideas showing some evid and organisation and uses scientific terminology appropria spelling, punctuation and grammar are used with s	S e clarity uracy
3	5-6	a detailed explanation e.g. solid has strong ionic bon oppositely charged ions), does not conduct when solid becaus cannot move, does conduct when molten because ions can the answer communicates ideas clearly and coheren range of scientific terminology accurately spelling, punctuation and grammar are used with few	tween ns a S

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UG034057 November 2012

Llywodraeth Cynulliad Cymru Welsh Assembly Government
For more information on Edexcel qualifications, please visit our website www.edexcel.com

Rewarding Learning

